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I. Supplementary Results

Table TAI
Most and Least Routine Occupations
This table reports the 10 occupations with the highest and the 10 occupations with the lowest routine-task
intensity (RTI) scores, as of 2014.

SOC Occupation Title RTI Score
Panel A: Top 10 Occupations with the Highest Routine-Task Intensity Score
43-9051 Mail Clerks and Mail Machine Operators, Except Postal Service 1.66
43-4071 File Clerks 1.65
51-9031 Cutters and Trimmers, Hand 1.64
51-3093 Food Cooking Machine Operators and Tenders 1.62
51-9022 Grinding and Polishing Workers, Hand 1.61
51-6062 Textile Cutting Machine Setters, Operators, and Tenders 1.57
43-6012 Legal Secretaries 1.54
43-4021 Correspondence Clerks 1.47
53-7011 Conveyor Operators and Tenders 1.47
23-2091 Court Reporters 1.42
Panel B: Bottom 10 Occupations with the Lowest Routine-Task Intensity Score
39-9031 Fitness Trainers and Aerobics Instructors -2.98
33-1021 First-Line Supervisors of Fire Fighting and Prevention Workers -2.95
17-2021 Agricultural Engineers -2.73
19-3092 Geographers -2.73
11-9021 Construction Managers -2.61
13-1141 Compensation, Benefits, and Job Analysis Specialists -2.53
21-1094 Community Health Workers -2.53
53-5031 Ship Engineers -2.41
25-2012 Kindergarten Teachers, Except Special Education -2.38
53-4011 Locomotive Engineers -2.28




Table IAII—Robustness of Asset Pricing
Alternative Industry Classifications in Panel Regressions

This table reports results of robustness tests on the panel regressions on conditional beta (in Panel A) and
annual stock returns (in Panel B) using alternative industry classifications. Conditional beta is constructed
using 12 monthly stock returns following Lewellen and Nagel (2006). Baseline uses the Fama-French 17-
industry classification. FF49 uses the Fama-French 49-industry classification. SIC1 and SIC2 use the
one-digit SIC industry sector classification and two-digit SIC industry classification, respectively. HP50
and HP100 use the 10-K text-based fixed industry classifications as in Hoberg and Phillips (2010); Hoberg
and Phillips (2016) with 50 and 100 industry categories, respectively. No Ind. means running the regression
without industry fixed effects. All standard errors are double clustered at the firm and year level and reported
in parentheses. *, ** and *** indicate significance at the 10%, 5%, and 1% level, respectively. The sample
covers stock returns from July 1992 to June 2016.

Panel A: Conditional Betas

Baseline FF49 SIC1 SIC2 HP50 HP100 No Ind.
RShare;_1 —0.54*** —0.36*** —0.52%** —0.41*** —0.37*** —0.29*** —0.48%***
(0.14) (0.14) (0.11) (0.12) (0.10) (0.09) (0.13)
Firm Control Y Y Y Y Y Y Y
Fixed Effects IndxYr IndxYr IndxYr IndxYr IndxYr IndxYr Yr
Observations 40,416 40,416 40,416 40,416 31,988 31,988 40,416
Adj. R? 0.07 0.09 0.06 0.09 0.11 0.12 0.05
Panel B: Annual Stock Returns
Baseline FF49 SIC1 SIC2 HP50 HP100 No Ind.
RShare;_1 —9.00*** —9.04*** —11.62*** —9.23%** —10.46*** —7.70** —11.85**
(3.25) (3.00) (4.31) (3.25) (3.88) (3.90) (5.04)
Firm Control Y Y Y Y Y Y Y
Fixed Effects IndxYr IndxYr IndxYr IndxYr IndxYr IndxYr Yr
Observations 40,416 40,416 40,416 40,416 31,988 31,988 40,416
Adj. R? 0.15 0.18 0.14 0.17 0.19 0.19 0.12




Table IAIII—Robustness of Asset Pricing
Panel Regressions with Subsamples by Industry Sectors
This table presents results of panel regression on stock returns within each one-digit SIC industry sector.
Firm controls include operating leverage, book-to-market ratio, operating cost, cash flows, size, and market
leverage (see Appendix A in the main text for definitions). All standard errors are double clustered at the
firm and year level and reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1%
level, respectively. The sample covers stock returns from July 1992 to June 2016.

Panel A: Conditional Betas

Sector Mining  Construction = Manufacture  Transportation = Wholesale Retail Service
RShare; 1 —6.64 —38.19* —17.10*** —7.77 —16.40 —10.27** 0.07
(12.37) (22.10) (6.41) (15.25) (11.19) (5.12) (8.56)
Firm Control Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Observations 1,452 554 20,897 2,214 1,759 4,271 9,013
Adj. R? 0.33 0.28 0.13 0.13 0.16 0.24 0.13
Panel B: Annual Stock Returns
Sector Mining Construction  Manufacture  Transportation = Wholesale Retail Service
RShare; 1 —0.28 -0.34 —0.64*** 0.05 —0.53 —0.99*** -0.13
(0.61) (1.62) (0.13) (0.65) (0.37) (0.26) (0.30)
Firm Control Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Observations 1,452 554 20,897 2,214 1,759 4,271 9,013
Adj. R? 0.19 0.13 0.05 0.07 0.02 0.05 0.06




Table IATV—Robustness of Asset Pricing
Five Portfolios Sorted on RShare without Industry Control
This table reports time-series averages of stock returns for five portfolios sorted on the share of routine-task
labor (RShare). At the end of each June, firms are sorted into five value-weighted portfolios based on their
RShare. Mean Ezxcess Returns are monthly returns minus the one-month Treasury bill rate. Uncondition-
al CAPM and Conditional CAPM correspond to the unconditional CAPM time-series regressions and the
conditional CAPM regressions following Lewellen and Nagel (2006), respectively. Newey and West (1987)
standard errors, reported in parentheses, are estimated with four lags for the portfolio returns and uncondi-
tional CAPM and with one lag for the conditional CAPM. All returns, alphas, and their standard errors are

annualized by multiplying by 12 and are reported in percentages. *, **, and *** indicate significance at the
10%, 5%, and 1% level, respectively. The sample covers stock returns from July 1992 to June 2016.

L 2 3 4 H H-L
Mean Excess Returns
E[R] -1y (%) 9.56** 8.71** 8.29** 8.04** 6.58** —2.98*
(4.41) (3.50) (3.40) (3.33) (2.80) (1.67)

Unconditional CAPM

MKT 3 1.25%% 0.98%** 1.02%+* 0.93** 0.87%** —0.38**
(0.07) (0.03) (0.03) (0.04) (0.04) (0.06)

a (%) 0.13 1.26 0.60 0.99 —0.00 —0.14
(2.29) (1.37) (1.19) (1.14) (1.23) (2.42)

R? 0.75 0.85 0.87 0.87 0.82 0.18

Conditional CAPM

Avg. MKT B 1.15%% 0.95%** 0.98"** 0.91%* 0.87%** —0.28**
(0.07) (0.07) (0.05) (0.04) (0.04) (0.08)

Avg. o (%) 2.71 1.81 1.00 1.17 0.51 —2.23
(2.07) (1.62) (1.20) (1.02) (0.89) (2.45)

Avg. R? 0.78 0.87 0.85 0.88 0.82 0.28




Table IAV—Robustness of Asset Pricing

Excess Returns and CAPM Betas in Subsamples by Firm Size
This table reports mean excess return and unconditional CAPM time-series regression results for large firms
(firms with above-median size within industry-year) and small firms. At the end of each June, firms in each
sample are sorted into value-weighted portfolios based on their RShare within Fama-French 17 industries.
Newey and West (1987) standard errors, reported in parentheses, are estimated with four lags. All returns,
CAPM alphas, and their standard errors are annualized by multiplying by 12 and are reported in percentages.
* %% and *** indicate significance at the 10%, 5%, and 1% level, respectively. The sample covers stock returns
from July 1992 to June 2016.

L 2 3 4 H H-L
Panel A. Large Firms
E[R] —ry (%) 10.02** 9.11** 9.21%** 8.41%** 6.22** —3.81*
(3.93) (3.89) (3.42) (2.95) (3.02) (2.23)
MKT g 1.09*** 1.08*** 1.02%** 0.87*** 0.86*** —0.23***
(0.05) (0.03) (0.03) (0.02) (0.04) (0.06)
a (%) 1.78 0.95 1.52 1.82% —0.28 —2.06
(1.82) (1.66) (1.09) (1.03) (1.32) (2.12)

Panel B. Small Firms

E[R] —rs (%) 13.79* 12.87* 12.79* 11.80%* 10.61** ~3.18
(5.77) (5.33) (4.98) (5.04) (4.80) (1.81)

MKT 3 1.30%** 1,275+ 1.19%** 111+ 1,14+ —0.15**
(0.06) (0.06) (0.06) (0.07) (0.06) (0.06)

a (%) 3.96 3.28 3.75 3.37 1.95 —2.01
(3.63) (3.40) (3.12) (3.20) (2.86) (2.35)




Table IAVI—Robustness of Asset Pricing

Five Employment-Weighted Portfolios Sorted on RShare
This table reports the time-series averages of stock returns for five portfolios sorted on the share of routine-
task labor (RShare). At the end of each June, firms in each Fama-French 17 industry are sorted into
five employment-weighted portfolios based on their RShare. Mean Excess Returns are monthly returns
minus the 1-month Treasury bill rate. Unconditional CAPM and Conditional CAPM correspond to the
unconditional CAPM time-series regressions and conditional CAPM regressions following Lewellen and Nagel
(2006), respectively. Newey and West (1987) standard errors, reported in parentheses, are estimated with
four lags for the portfolio returns and unconditional CAPM and with one lag for the conditional CAPM. All
returns, alphas, and their standard errors are annualized by multiplying by 12 and are reported in percentages.
*,** and *** indicate significance at the 10%, 5%, and 1% level, respectively. The sample covers stock returns
from July 1992 to June 2016.

L 2 3 4 H H-L
Mean Ezxcess Returns
E[R] —rf (%) 12.05%** 8.45* 8.54** 10.46*** 8.37** —3.68*
(4.10) (4.37) (4.16) (3.13) (3.90) (2.00)

Unconditional CAPM

MKT 8 112+ 1.13%% 1067+ 0.86"* 0.92%** —0.20%**
(0.06) (0.07) (0.07) (0.04) (0.08) (0.06)

o (%) 3.59 —0.12 0.52 3.97% 1.41 ~2.18
(2.35) (2.77) (2.55) (1.77) (2.58) (2.07)

R? 0.73 0.71 0.70 0.72 0.57 0.07

Conditional CAPM

Avg. MKT 3 1.21%% 1.20%* 1.13%+ 0.96** 0.96*** —0.25%*
(0.08) (0.08) (0.10) (0.06) (0.10) (0.08)

Avg. o (%) 3.31 0.60 1.10 1.86 1.45 —1.87
(2.99) (3.94) (3.04) (2.03) (2.32) (2.59)

Avg. R? 0.75 0.79 0.78 0.73 0.62 0.28




17 industry are first sorted into three bins based on a firm characteristic.

Table IAVII—Robustness of Asset Pricing
Full Matrix of Betas of Double-Sorted Portfolios
This table reports the portfolio sorting conditional on firms’ characteristics. At the end of each June, firms in each Fama-French
Within each bin, I further sort firms into five value-
weighted portfolios based their RShare, resulting in fifteen portfolios in total. See Appendix A in the main text for definitions of firm

ko ksk

characteristics. Newey and West (1987) standard errors, reported in parentheses, are estimated with four lags. *, **, and *** indicate
significance at the 10%, 5%, and 1% level, respectively. The sample covers stock returns from July 1992 to June 2016.

L 2 3 4 H H-L L 2 3 4 H H-L
Conditional on Operating Leverage Conditional on Book-to-Market Ratio

Low 1.09%F%  1.10%**  1.10%%*  0.95%** 0.90*** -0.19*** Low 1.13%F% 1.09%F*F  1.08%**  (0.93*%*F*F  (.80%**  -0.33%**
(0.06) (0.06) (0.05) (0.03) (0.03) (0.07) (0.09) (0.06) (0.05) (0.04) (0.03) (0.09)

Medium  1.22%%%  1.08%**  0.92%%F Q. 77%* 0. 77%F  _0.46*** Medium 1.20%%% 1.10%** 0.91%FF (.79%%* 0.95%** _0.25%**
(0.10) (0.05) (0.05) (0.04) (0.07) (0.13) (0.06) (0.07) (0.05) (0.06) (0.05) (0.07)

High LI1T¥FF 0.96%F%  0.97***  1.02%FF  0.76*%** _-0.35%** High 1.13%F% 0.99%**  0.90%**  (.95%**  (.94%** (. 20%**
(0.08) (0.08) (0.07) (0.08) (0.06) (0.11) (0.07) (0.06) (0.07) (0.05) (0.06) (0.08)

Conditional on Operating Cost Conditional on Size

Low 1A1F0F 1 18%*  1.03%%F  1.03%**  0.95%*%* _-0.16* Low 1.27H6F 1 18FF 1 1TFR 11400 1.06%FF -0.21%*
(0.08) (0.06) (0.05) (0.07) (0.03) (0.09) (0.07) (0.08) (0.09) (0.08) (0.07) (0.08)

Medium  1.16%**  1.02%¥*%* 1.01*%** (0.88*** (0.92%** _0.25%** Medium 1.32%** 1.21%¥%* 1. 18%** 1 08*** 1.12%** _0.20%**
(0.06) (0.07) (0.05) (0.04) (0.05) (0.08) (0.05) (0.05) (0.05) (0.06) (0.06) (0.06)

High 1.10%%%  0.98%**  0.87**FF (0.77F*  0.85*** -0.25**  High 1.10%F%  1.03%%*  1.00%%*  (.85%**  (.86%**  -(.24%**
(0.08) (0.05) (0.05) (0.06) (0.06) (0.10) (0.05) (0.03) (0.04) (0.03) (0.03) (0.05)

Conditional on Operating Cash Flow Conditional on Market Leverage

Low 1.31FF*  1.30%**%  1.14%*%*  1.24%**  1.02%¥%F  -0.29%** Low 1.14%%%  1.09%*%*%  1.06%** 1.11*¥**  0.97%* _0.17*
(0.09) (0.08) (0.09) (0.05) (0.06) (0.06) (0.06) (0.08) (0.07) (0.04) (0.09) (0.09)

Medium  1.07%%%  0.91%**  0.89%** (. 73%** (.85%** _0.21*** Medium 1.16%** 0.97%** (.98%** (. 78%+* (.84%** _(.32%**
(0.07) (0.04) (0.03) (0.04) (0.06) (0.07) (0.06) (0.05) (0.04) (0.03) (0.04) (0.08)

High 0.97F%*  1.08%FF  1.15%**  0.97%FF  (0.92%**  _0.05 High 1.12%F% 0. 04%¥% 0. 97F<* .87 0.95%F*  _0.17*
(0.06) (0.06) (0.07) (0.04) (0.07) (0.11) (0.07) (0.06) (0.04) (0.08) (0.07) (0.10)




Table TAVIII—Robustness of Asset Pricing
Panel Regression on Share of Routine-Cognitive and Routine-Manual Labor
This table reports results on the predictability of firms’ share of routine-task labor (RShare), share of routine-
cognitive labor (RCShare), and share of routine-manual labor (RMShare) on their conditional betas and
annual stock returns, while controlling for firm characteristics known to predict risk. Occupations are defined
as routine-cognitive if they are classified as routine-task and they are also in the following broad occupation
categories: “management, business, and financial operations occupations,” “professional and related occupa-
tions,” “sales and related occupations,” and “office and administrative support occupations” (Jaimovich and
Siu (2014)). I define the remainder of the routine-task occupations as routine-manual. Conditional betas are
calculated following Lewellen and Nagel (2006) for each year t. Annual stock returns are in percentages. See
Appendix A of the main text for definitions of firm characteristics. All regressions include industry-year fixed
effects, where I use the 17-industry classification of Fama and French (1997). Standard errors are clustered

at both the firm and the year level and reported in parentheses. *, **, and *** indicate significance at the
10%, 5%, and 1% level, respectively.
(1) (2) (3) (4) (5)
Panel A: Conditional Betas
RShare;_1 —0.59***
(0.14)
RCShare;_ —0.48** —0.60*** —0.44**
(0.21) (0.22) (0.21)
RM Share;_ —0.53*** —0.59*** —0.57***
(0.14) (0.15) (0.14)
Firm Control N N N N Y
Observations 40,416 40,416 40,416 40,416 40,416
Adjusted R? 0.07 0.07 0.07 0.07 0.07
Panel B: Annual Stock Returns
RShare;_1 —6.49*
(3.46)
RCShare;_q —-3.38 —4.82 —12.67*
(6.71) (6.80) (7.17)
RMShare;_4 —6.70* —7.13** —7.64**
(3.51) (3.58) (3.37)
Firm Control N N N N Y
Observations 40,416 40,416 40,416 40,416 40,416
Adjusted R? 0.13 0.13 0.13 0.13 0.15




Table TAIX—Table IX with Full Coefficients
Response of Firm Technology Investment to Aggregate Shocks
This table reports regression results in Table IX in the main text with full coefficients. In Table IX, coefficients
on RShare quintile dummies and firm-level controls are not reported for brevity. See Table IX and Appendix
B in the main text for more details. *, **, and *** indicate significance at the 10%, 5%, and 1% level,
respectively.

Compustat Firms CiTDB Establishments
Dep. Var. Machines Other Capital Computers
(1) (2) (3) (4) (5) (6)
Shock 0.86*** 1.40%** 0.99*** 1.21** 0.41%** 1.04***
(0.10) (0.27) (0.17) (0.52) (0.10) (0.23)
D(R)a x Shock —0.49 —0.06 —0.67**
(0.34) (0.64) (0.31)
D(R)s x Shock —0.63* —0.08 —0.69**
(0.33) (0.61) (0.30)
D(R)4 x Shock —0.65** —-0.37 —0.77**
(0.33) (0.61) (0.30)
D(R)s5 x Shock —0.80*** —0.48 —0.94***
(0.29) (0.60) (0.31)
D(R), —-0.37 —0.61 2.52**
(0.97) (1.88) (1.01)
D(R)s —-0.91 —1.00 2.09**
(0.98) (1.81) (0.98)
D(R)4 —1.17 0.65 2.06™*
(0.98) (1.96) (1.02)
D(R)s —0.30 0.43 2.94***
(0.97) (1.81) (1.07)
Tobin's Q 13.51%** 13.47%** 19.39*** 19.38*** 0.84 0.79
(0.75) (0.75) (1.45) (1.44) (0.59) (0.59)
MEkt.Lev —19.12%** —19.17** —26.02%** —26.08*** —0.92 —1.03
(1.91) (1.91) (3.10) (3.10) (1.42) (1.41)
Cash Flow 0.01 0.01 0.12 0.12 0.03 0.03
(0.05) (0.05) (0.10) (0.10) (0.03) (0.03)
Cash Holding 31.16™** 31.09%** 47.54% 47.46*** —6.70%** —6.78***
(2.99) (2.99) (5.57) (5.57) (1.95) (1.95)
Assets —6.15*** —6.07*** =711 —7.12%* —2.46*** —2.48***
(0.46) (0.46) (0.75) (0.76) (0.31) (0.31)
Observations 41,601 41,601 40,403 40,403 1,405,940 1,405,940
Adjusted R? 0.21 0.21 0.14 0.14 0.07 0.07




Table IAX—Table X with Full Coefficients
Response of Firm Routine-Task Employment to Aggregate Shocks
This table reports the regression results in Table X in the main text with full coefficients. In Table X,
coefficients on RShare quintile dummies and interaction terms related to D(R)2 and D(R)s are not reported

for brevity. See Table X and Appendix B in the main text for more details. *, **, and *** indicate significance

at the 10%, 5%, and 1% level, respectively.

Panel A: Routine-Task Employment

Dep. Var. Routine Employment Share of Routine Employment Share of Routine Wage Bill
(1) (2) (3) (4) (5) (6)
Shock 1.34%* —0.25 0.09*** —0.11* 0.06** —0.07
(0.15) (0.43) (0.03) (0.06) (0.03) (0.05)
D(R)a x Shock 1.44%* 0.12 0.06
(0.55) (0.08) (0.07)
D(R)s x Shock 1.81%* 0.19** 0.19***
(0.52) (0.08) (0.07)
D(R)4 x Shock 1.65%** 0.18** 0.11
(0.52) (0.09) (0.08)
D(R)s5 x Shock 1.98*** 0.35*** 0.29***
(0.51) (0.10) (0.09)
D(R), —b58.70*** —6.98*** —5.03***
(4.16) (0.59) (0.49)
D(R)3 —81.37*** —11.78*** —9.43**
(4.21) (0.66) (0.55)
D(R)4 —103.03*** —17.80*** —14.46***
(4.27) (0.73) (0.62)
D(R)s —131.77*** —29.26™** —25.41***
(4.52) (0.91) (0.80)
# Firm-Year 38,056 38,056 38,056 38,056 35,356 35,356
Observations 146,551 146,551 164,889 164,889 157,907 157,907
Adjusted R? 0.08 0.12 0.07 0.12 0.07 0.12

10



Table TAX — Continued

Panel B: Sensitivity of Routine-Task Employment to Investment

Dep. Var. Routine Employment
I = Machines I = Other Capital
(1) (2) (3) (4)
1 0.01 0.07* 0.03*** —0.04
(0.01) (0.04) (0.01) (0.04)
I x D(R) 0.02 —0.01 —0.01 0.07
(0.03) (0.07) (0.01) (0.04)
I x D(R)s 0.00 —0.11 —0.04*** 0.01
(0.02) (0.08) (0.01) (0.05)
I x D(R)4 —0.01 —0.10* 0.05 0.06
(0.02) (0.05) (0.03) (0.07)
I x D(R)s 0.01 —0.08* —0.02* 0.06
(0.02) (0.05) (0.01) (0.04)
I x D(R)3 x Shock 0.17 —1.06**
(0.65) (0.53)
I x D(R)s x Shock 0.75 —0.56
(0.77) (0.57)
I x D(R)4 x Shock 0.88* —0.16
(0.49) (0.77)
I x D(R)5 x Shock 1.10* —1.04*
(0.50) (0.53)
D(R)2 x Shock 0.96 1.42
(0.99) (1.02)
D(R)s x Shock 1.04 1.50
(0.94) (0.96)
D(R)4 x Shock 0.85 0.95
(0.94) (0.97)
D(R)5 x Shock 1.30 1.72*
(0.92) (0.95)
I x Shock —0.64 0.89*
(0.40) (0.51)
Shock 0.02 —0.44
(0.78) (0.82)
D(R), —0.55*** —0.60"** —0.54*** —0.63***
(0.05) (0.08) (0.05) (0.08)
D(R)3 —0.72%* —0.77* —0.70*** —0.79**
(0.05) (0.08) (0.05) (0.08)
D(R)4 —0.92%** —0.97*** —0.92%** —0.98%**
(0.05) (0.08) (0.05) (0.08)
D(R); —1.15%** —1.22%** —1.13*** —1.24**
(0.06) (0.08) (0.06) (0.08)
Observations 66,785 66,785 66,392 66,392
Adjusted R? 0.14 0.14 0.14 0.14
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Table IAXI—Robustness of the Mechanism

Firm Technology Investment with Ind-Year Fixed Effects
This table reports results of robustness tests of firms’ investment response to aggregate shocks to including
industry-year fixed effects. The sample period is 1990 to 2014. Investment in Machines is the real growth
rate of machinery and equipment capital from ¢ — 1 to t. Investment in Other Capital is the real growth
rate of property, plant, and equipment excluding machinery and equipment from ¢ — 1 to ¢. Investment in
Computers is the growth rate of the number of computers in firms’ establishments from ¢ — 1 to ¢ based on
CiTDB data. Shock is real GDP growth from ¢t — 1 to t. D(R); is a dummy quintile variable equal to one if
the firm’s RShare belongs in quintile ¢ at year t — 1, where breakpoints vary by industry. I use the 17-industry
classification of Fama and French (1997). All regressions include a vector of controls of industry-year fixed
effects, firm fixed effects, and lagged values of log Tobin’s ), market leverage, cash flows, cash holdings,
and log total assets. Coefficients on quintile dummies and firm controls are not reported. See Appendix A
in the main text for definitions of these variables. Establishment-level regressions in columns (5) and (6)
are weighted by an establishment’s number of computers within the firm in ¢ — 1. All standard errors are
clustered at the firm level and reported in parentheses. *, **, and *** indicate significance at the 10%, 5%,
and 1% level, respectively.

Compustat Firms CiTDB Establishments
Dep. Var. Machines Other Capital Computers
(1) (2) (3)
D(R)2 x Shock —0.61* —0.23 —0.47
(0.33) (0.64) (0.31)
D(R)2 x Shock —0.74** —0.24 —0.56*
(0.32) (0.61) (0.30)
D(R)2 x Shock —0.81** —0.58 —0.63**
(0.32) (0.61) (0.30)
D(R)2 x Shock —0.98*** —0.62 —0.90***
(0.31) (0.60) (0.31)
Observations 41,601 40,403 1,405,940
Adjusted R? 0.23 0.15 0.13
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Table TAXII—Robustness of the Mechanism
Firm Routine-Task Employment with Industry-Year Fixed Effects

This table presents results of robustness tests of firms’ employment response to aggregate shocks to includ-
ing industry-year fixed effects. Change in Routine Employment is the establishment’s three-year change in
employment of routine-task labor normalized by the average of the establishment’s routine-task employment
in year t — 3 and t. Change in Share of Routine Employment is the change in the ratio of establishments’
routine-task employment and total employment from ¢ — 3 to ¢. Change in Share of Routine Wage is defined
similarly using the ratio of total wages paid to routine-task labor and the establishment’s total wage expense.
In all variable constructions, routine-task labor is defined in ¢ — 3 and maintains the same definition for three
years to form the time-series changes in the dependent variables, which restricts the sample period for this
test to 1996 to 1998 and 2002 to 2014 in columns (1) and (2) and 2002 to 2014 in column (3) since wage data
are available in microdata after 1998 (see Appendix A in the main text for more details). Shock is real GDP
growth from ¢t —3 to t. D(R); is a dummy quintile variable equal to one if the firm’s RShare belongs in quintile
1 at year t — 3, where breakpoints vary by industry. I use the 17-industry classification of Fama and French
(1997). Coefficients of quintile dummies are not report. All regressions include industry-year fixed effects as
well as firm fixed effects. I weight establishments within each firm-year for all regressions. The weights are
the average of establishments’ routine-task employment in ¢t — 3 and ¢t when dependent variable is routine
employment, and average total employment (total real wages) in ¢ — 3 and ¢ when the dependent variable is
the share of routine employment (share of routine wages). All standard errors, reported in parentheses, are
clustered at the firm level. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

Dep. Var. Routine Employment Share of Routine Employment Share of Routine Wage
(1) (2) 3)
D(R)2 x Shock 1.45%** 0.12 0.06
(0.54) (0.08) (0.07)
D(R)3 x Shock 1.83%* 0.19** 0.19***
(0.52) (0.08) (0.07)
D(R)4 x Shock 1.66*** 0.19** 0.11
(0.52) (0.08) (0.08)
D(R)5 x Shock 1.97%* 0.35%** 0.29***
(0.51) (0.10) (0.09)
Observations 41,601 40,403 1,405,940
Adjusted R? 0.13 0.13 0.13
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II. Technical Details

Imputation of Wages for OES Establishments Before 1998. The raw microdata of the OES
program provide 12 buckets for hourly wages for each occupation starting in 1998. In other
words, the raw data provide the number of employees at establishment-occupation-wage
bucket level. I thus estimate median hourly wages for each occupation in each establishment
from 1998 onwards. The OES microdata do not have wage information before 1998. Thus,
for years before 1998, I estimate hourly wages from the Census Current Population Survey
Merged Outgoing Rotation Groups (CPS-MORG). Specifically, from the CPS-MORG, I
calculate hourly wages for 504 occupations in 13 broad industries by averaging hourly wages
of individuals aged from 18 to 65 within each group, weighted by the personal earnings
weights. To crosswalk a Census occupation to an OES occupation, I link Census and OES
occupational codes to a finer occupational classification—the Dictionary of Occupational
Titles (DOT)—and build the crosswalk if the Census occupation covers more than 50% of
the DOT occupations that the OES covers. When possible, I impute the hourly wage for
each occupation-industry (three-digit SIC) in the OES microdata. Otherwise, I use either
the estimated nationwide hourly wage for the OES occupation or the industry-level hourly
wage for the major group of the OES occupation. The total wage paid to an occupation in

an establishment is simply the product of employment and the hourly wage.

Matching OES FEstablishments and Compustat Firms. My matching of OES establishment
and Compustat firms relies in part on employer identification number (EIN). The OES
program began to record the parent firm’s EIN for establishments after 1999. For the sample
between 1990 and 1999, I back out the EIN information by linking OES establishments
through the BLS’s internal identifiers to the Quarterly Census of Employment and Wages
(QCEW) microdata, which record the EIN for the universe of establishments from 1990 to
2014. For the OES sample in 1988 and 1989, I match the establishments to Compstat firms
using legal names as no EINs are available.

The second part of the matching is conducted based on name matching. To do so, I first
purge names of the OES establishments and of Compustat firms. The OES data report the
legal name and the trade name of the establishments. Sometimes, neither of these names

corresponds to the names of the establishment’s parent firm. I thus employ another data
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set, ReferenceUSA, which provides the near-universe of all establishments in the U.S. and
the link between establishments and their parent firms.! After making these efforts to learn
the naming of establishments, I adjust my code for purging the names of establishments to

improve the name matching.

Additional Details of Drawing Figure 1.  Given that the OES data underwent a major change
in occupation classification in 1999, they are not suitable for time-series analysis that requires
tracking a given set of occupations over time. I thus use the CPS monthly data, which have
a time-series consistent measure of occupation, 0cc1990, from the Integrated Public Use
Microdata Series database. I classify occupations based on the distribution of RTT scores
using 1990 Census data. Specifically, I classify each occupation in the 1990 Census as routine-
task labor (1990) or nonroutine-task labor (1990) using the methodology described in Section
2.1 in the main text. I then track the employment of these two groups of occupations from

January 1988 to December 2015.

Grouping of Occupations in Table I.  The OES microdata use the OES Taxonomy classifica-
tion for occupations before 1998, and adopt the Standard Occupational Classification (SOC)
for occupations after 1998. In Table I, I aggregate occupations to their major group level
in the OES Taxonomy classification system for the 1990 to 1998 sample. For the 1999 to
2014 sample, I aggregate the major SOC classification to seven aggregate groups following
the suggestions of the SOC Revision Policy Committee. Specifically, Management represents
managerial and administration occupations (SOC 11-13), Professional represents profession-
al, paraprofessional, and technical occupations (SOC 15-31), Sales represents sales-related
occupations (SOC 41), Clerk represents office and administrative support occupations (SOC
43), Service represents service and related occupations (SOC 33-39), Agriculture represents
farming, fishing, and forestry occupations (SOC 45), and Production represents production,

maintenance, construction, and transportation occupations (SOC 47-53).

1See Michaels, Page, and Whited (2016) for a recent example of using ReferenceUSA to improve the
matching between BLS establishments and Compustat firms.
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III. Extended Model

The simple technology-switching model in the main text makes several simplifying as-
sumptions to show the core mechanism clearly. First, the model assumes that each firm is
essentially a single project. Hence, the firm’s RShare is either zero if the firm is automated
or CRCTRCN if the firm is unautomated. In the data, firms’ RShare is a much more continuous
variable. Second, the model excludes growth options by assuming that firms’ production
scale cannot be expanded or reduced. Hence, investment in this model is induced solely by
countercyclical technology switching, while investment in general is very procyclical. Third,
the model setup implies a nonstationary economy in terms of firms’ RShare, since after a
sufficient length of time, all firms switch from being unautomated to automated.

As an example to extend this model to capture additional features of the real world,
I embed this technology-switching model in a production-based model setting. In this ex-
tended model, T follow the setup in Berk, Green, and Naik (1999), Gomes, Kogan, and
Zhang (2003), and Kogan and Papanikolaou (2014) by assuming that each firm has multiple
projects and the firm can increase the number of projects by adopting new projects. The
cash flows of each project are subject to aggregate-, firm-, and project-level shocks. The
only new ingredient in this extended model, compared to the literature, is that there are two
types of projects—automated and unautomated projects, just like the firms in the simple
model. Due to idiosyncratic shocks, firms differ from each other in the number of automated
and unautomated projects, making RShare vary continuously in the cross-section. Firms’
exercise of their growth options (to adopt new projects) is subject to the net-present-value
rule and thus is procyclical. The stationarity of the economy in terms of firms’ RShare is
achieved by imposing a mechanism for the exercise of growth options. In particular, I assume
that building a new automated project takes more time (to adapt to the new technology)
than building a new unautomated project. This assumption makes the firm prefer to adopt
a new unautomated project to a new automated project when the firm is doing extremely
well. In equilibrium, while existing unautomated projects are switched, new unautomated
projects are undertaken, resulting in a stationary distribution of the two types of projects.
Finally, I calibrate this extended model and support the model’s quantitative fit with the
data.

16



A.  Technology

There are a large number of infinitely lived firms that produce a homogeneous final good.
Firms behave competitively, and there is no explicit entry or exit. Firms are all-equity

financed, hence firm value is equal to the market value of its equity.

A.1. Projects

Each firm owns a finite number of individual projects. Firms create projects over time
through investment, and projects expire randomly.? The cash flows generated by project j

of firm ¢ at time ¢ are given by

Ajjy = T (TA.1)

where x; is the aggregate shock that affects the cash flows of all existing projects, and
zi+ and €;; are the firm-specific shock and the project-specific shock, respectively. While
aggregate uncertainty contributes to the aggregate risk premium, the firm- and project-
specific shocks contribute to firm heterogeneity in the model. Similar to Gomes, Kogan,
and Zhang (2003), I assume that shocks evolve according to mean-reverting processes to
capture their path-dependency property. Different from Gomes, Kogan, and Zhang (2003),
I assume for tractability that the rate of mean-reversion is the same for all levels of shocks.

Specifically,

dl’t = —gl'tdt + Umdet
dzi,t = —921-7tdt + Udezt (IAQ)
dej,t = —9€j7tdt + UedBEt,

where 6 € (0, 1) is the rate of mean-reversion and By, B.;, and B,; are Wiener processes that

are independent of each other. Hence, the dynamics of a; j, = log(A4; ;) evolve according to
dai,j,t = —Hai,ﬂdt + UadBt, (IAB)

where 0, = (/02 + 02+ 02 and B; = (0,Byt + 0.B.t + 0.B)/0,, which is also a Wiener

process. In the following analysis, I suppress firm index ¢ and project index j for notational

2Firms with no existing projects can be viewed as firms waiting to enter the product market. In this
sense, my model endogenously takes into account the entry and exit of firms.
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simplicity unless otherwise indicated.

A project is characterized as follows. First, each project requires an initial investment of
I at the project’s initiation date. Second, each project requires fixed units of nonroutine-task
labor such as managers to perform nonroutine tasks, which demands a total wage of cy per
unit of time. Finally, each project also requires factor input to perform routine tasks, and the
project generates cash flows when both nonroutine tasks and routine tasks are performed.

A project’s routine tasks can be performed by either fixed units of routine-task labor or
fixed units of machines. If the firm hires routine-task labor, it pays a total wage of cg per
unit of time, and the project starts producing immediately. Production incurs a fixed cost of
f per unit of time. I refer to projects using routine-task labor as unautomated projects. If the
firm invests in machines, the firm pays I, at the initiation date, but it takes the firm 7" units
of time to adapt the technology embodied in the machines for its project, during which time
the project does not generate any cash flows.® After the first 7' periods, the project starts
generating cash flows and incurs a fixed cost of f per unit of time. Using machines does not
incur additional fixed costs.* I refer to projects using machines as automated projects. All
capital, once purchased, has zero resale value.

Given the above setup, the operating profits for an unautomated project are

WU(t) = At — CR — CN — f, (IA4)

and the operating profits for an automated project initiated at time ¢y are

—c t <ty+ T (technology-adoption periods
wa(to;t) = N ’ ( & ) (IA.5)
A —en— f t >ty + T (production periods).

A.2.  Firm Dynamics

Given that each project uses a fixed amount of input factors, changes in a firm’s capital
and labor in the model are represented by changes in the number of the firm’s unautomated

and automated projects. Such changes are assumed to arise for one of three reasons. First,

31 assume that projects have heterogeneous needs for technology. Hence, each project requires some time
to customize the technology for its own needs.

4 Alternatively, we can allow for a fixed cost of using machines, but regard the cost as part of f. In this
case, cp is the excess cost of using routine-task labor to using machines.
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at any point in time, projects can expire independently at a rate of §. Second, following
Kogan and Papanikolaou (2014), a new project can exogenously become available to the
firm according to a Poisson process with an arrival rate of A. At the time of arrival, the
project-specific shock of the new project is at its long-run average value, that is, ¢, = 0. Such
investment opportunities cannot be postponed or preserved. If the firm decides to undertake
the new project, it can choose to initiate either an unautomated or an automated project.

Third, a firm can endogenously switch its existing projects’ type at any time. If the
firm decides to switch a project from unautomated to automated, it lays off the project’s
routine-task labor and invests [, in machines. I assume that technology has evolved to a
stage such that automating unautomated projects is profitable. That is, I assume that I,
is significantly lower than the present value of all future wages paid to routine-task labor,
Iy < %'5 For simplicity, I assume that the process of the project-specific shock is not
affected after a project’s type is switched. Given that machines have zero resale value and
routine-task labor is significantly more costly than machines, switching from automated
projects to unautomated projects is never optimal.®

A firm’s existing projects are the sum of its unautomated projects and its automated
projects. Suppose at time ¢ that a firm has ny; unautomated projects and n4,; automated
projects. Then the firm’s share of routine-task labor (RShare) is defined as the ratio of the

total wages paid to its routine-task labor relative to its total wage expense:

RShare(t) = — R0t (IA.6)
en(nug +mnag)

5The literature on investment-specific technological shocks argues that a large part of the technological
progress after World War II took place in equipment and software and can be inferred from the decline in the
quality-adjusted price of new capital goods. See Greenwood, Hercowitz, and Krusell (1997), Papanikolaou
(2011), and Kogan and Papanikolaou (2014) for more details.

61 do not allow the firm to switch an automated project to a new automated project to ensure that the
general assumption applies to both unautomated and automated projects that the firm cannot endogenously
suspend production for purposes other than adopting labor-saving technology. Technically, I assume that if
the firm switches an automated project to a new automated project, the firm does not need to take another T’
periods to learn the technology for the project, and the project starts incurring production costs immediately.
Under this assumption, such choice is never optimal.
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B.  Valuation

Following Berk, Green, and Naik (1999) and Zhang (2005), I specify the stochastic dis-
count factor explicitly as
e

—— = —rdt — oAdBy, (IA.7)
Ay

where r is the interest rate and o, is the price of risk.

B.1.  The Value of Automated Projects

Since automated projects do not have any options, their value is simply the discounted

value of their future profits. For an automated project initiated at %,

0 A s
Valto; t) = Et/ e O (b, t + )ds
0

Ay
0o —(r+6)t’
_ Ag_eseg(s)ds _ cy + e ( ) f
% r+0

(IA.8)

Y

where t' = max(ty+ 7T —t,0) is the time to wait (for the project to generate cash flows) and

g(s) = (=6 —1r)s — =7~ (1 — 6*95) + Z—g (1 — 6*295).

Proof: From the dynamic specification of project’s cash flows and the SDF, we have:

—0 S O(u—s
Apps = Af *eJo gac’dB.

Y (IA.9)
At+s — Ate(frfioA)sfcrAst7
where 0, = /02 4+ 02+ 0% and B; = U”BZt+"jfth+"6Bet.
N g5 Niss
VA(toyt) = E; 0 € T [1(t+s>t0+T)(At+s - f) - CN} ds
! (IA.10)

B e + e—(r+5)t’f
r—+9

9

0 6795 Vs
=F, A7 e%ds
t/

where ¢ = max(tog + T — t,0) and vy = (=6 —r — 202)s + [5(0,e"“™*) — 6,)dB,, +

I 0.’ dB,, + IS o.e?“=9)dB,,, which is a random variable that follows a normal dis-
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tribution (see Shreve (2004) section 6.9). The mean and variance of vy are given as

E(v)) = (=6 — 7 — ;ai)s
9% o 52 (TA.11)
_ 2 TV A _ —0s “a _ —20s
Var(vs) = 058 — 7 (1 e ) + 50 (1 e ) :

Exchanging the expectation operator and the integral operator in (IA.10) using Fubini’s

Theorem, and using the log-normal property of e, we have

o0 e—0s —(r48)t/
Valto:t) = /t A B Var(un) g _ N +7~6+5 f

_ oo Ae_gseg(s)ds B CN + e*(TJr(S)t/f
vt r+6 ’

(IA.12)

where g(s) = (=0 —r)s — 2o (1 — 6_93> + Z—g (1 — 6_268).

B.2.  The Value of Unautomated Projects

The value of an unautomated project can be divided into the value of assets in place,

VAP (t), and the value of switching options, V79 (t):
Vu(t) = Vit (t) + V7O (). (IA.13)

The value of assets in place is simply the discounted value of future profits,

00 A s
VAP (1) = B, / e84 1 6)ds
0 ¢ (IA.14)
_ /OO Ae—&seg(s)ds _ CR + CN + f
o ! r+4§

The value of the switching option can be calculated as the discounted value of the optimal
payoff,
VFO(t) = Payoff(t + 7)E,[e~ 97, (IA.15)

where 7 is the optimal stopping time for the firm to switch technology and I@Zt[] is an

21



expectation operator under the risk-neutral probability measure. The payoff function is

Payoff(t) = Va(t;t) — VAP (t) — Iy
_ —(r+6)T T
_crtfll—e ] I — / AS" 090) g (IA.16)
r+9 0

= P(A).

Hence, the switching option can be viewed as an investment opportunity with a fixed
benefit, a fixed direct cost, but a variable opportunity cost that is low if the project is doing

poorly. Following Dixit and Pindyck (1994), I prove the following proposition.

PROPOSITION 1 (Optimal exercise of switching options): A firm optimally switches a
project from unautomated to automated when the project’s cash flows, A;, are below a thresh-

old A*, where A* satisfies

d[P(AT)O(As, A7)
dA*

=0 VA > A (IA.17)

where O(A,, A*) = E,[e""97] is the optimal discounting of the option payoff.

Proof: Given that the payoff of exercising the switching option is monotonically decreas-
ing in A; (see equation (IA.16)) and also that the process of A; exhibits positive serially
correlation, we know that the optimal exercise of the switching option is when A; falls below
a certain threshold A* (see Dixit and Pindyck (1994) section 4.1.D).

In order to calculate E; [e_(’"+5)7], note that the stochastic discount factor uniquely cor-
responds to a risk-neutral probability measure HAD, under which th = B,, +o,t is a standard

Brownian motions. P satisfies

P A,
—_— = —e
dP Ao (IA.18)
1 2
= exp (—OABH — 20At> ,

where P is the physical probability measure. Given that B, and B.,, are idiosyncratic, they

OANOx

7=, then the dynamics of a;

have the same dynamics under P and P. Let a; = log A; +

under P are

da, = —0audt + o,.dB,, (IA.19)
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O'xth+0'szt+0'eB

Oq

where B, = < s still a standard Brownian motion under P. Therefore, 7
equals the time passed until G, reaches a* = log A* + #47= for the first time. Applying the

Laplace transform of 7 under P (Ricciardi and Sato (1988)), we have

Et [6—(T+5)7’]
2

{(log A+ %) (log A"+ %)2} 0 D_ (150 [<log A+ %) \/?]

SIN]

= exp (IA.20)
CRN (CYEDN|

= O(At7 A*>?

in which D,(z) is a parabolic cylinder function given as
22 1 r 1 22 V22 1—2 3 22
p-rvron () (L (5 2) - (522 2))
4 r (1%9;) 272 2 r (_%) 2 22
(TA.21)

where I'(z) is the Euler gamma function and H(«,; z) is the Kummer function defined as

H(a,v;z) = i::o Ej;:i; (TA.22)

with (), =n(n+1)---(n+n—1).

COROLLARY 1 (Cross-section of investment for technology switching): Holding all else
equal, a firm with a high RShare invests more in machines than a firm with a low RShare if

the economy experiences a negative shock, that is, dx, < 0.7
Proof: This follows directly from Proposition 1.

COROLLARY 2 (Cross-section of routine-task employment under negative aggregate shock-
s): Holding all else equal, a firm with a high RShare reduces more of their routine-task labor

than a firm with a low RShare if the economy experiences a negative shock, that is, dx, < 0.

Proof: This follows directly from Proposition 1.

"“Holding all else equal” in this corollary means that we are comparing two firms with the same number
of projects and the same set of cash flows for their projects. The only difference is that the high- RShare firm
has more unautomated projects than the other firm.
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Finally, the value of the unautomated project is

CR+CN+f

5 T PAN0M, A). (1A.23)

Volt) = /0 T AT 9 g

B.3.  The Value of Growth Opportunities

Given that investment opportunities cannot be postponed, firms optimally decide to
undertake new projects based on the NPV rule. The optimal exercise of the growth options
is thus characterized by comparing the incremental value of undertaking a new unautomated
project, Vi (t + s) — I, undertaking a new automated project, Va(t + s;t + s) — Iy — I, and
not undertaking a project.

The optimal exercise of switching options indicates that firms prefer undertaking new
automated projects over undertaking new unautomated projects if A, < A*.8 Let A** be the
threshold for firms to undertake a new project. The term A** is determined by making the

investment in the new project a zero-NPV project, that is, A** is the solution to
Valt;t)— Iy —1=0 (TA.24)

or to

Vu(t)—1=0. (TA.25)
I summarize these results in the following proposition.

PROPOSITION 2 (Optimal exercise of growth options): A firm optimally undertakes a new
project when the cash flows of the new project, A, = e®**0 are above a threshold A**, where
A* s the minimum of the solutions to equations (IA.24) and (IA.25).

If A* < A*, firms undertake an automated project when A* < Ay < A* and undertake
an unautomated project when A; > A*.

If A* > A*, firms undertake an unautomated project when A; > A**.

COROLLARY 3 (Procyclical aggregate investment): All firms are more likely to invest in

new projects if the economy experiences a positive shock, that is, dz; > 0.

Proof: This follows directly from Proposition 2.

8To see this, suppose that a firm undertakes a new unautomated project when A; < A*. Then, by
Proposition 1, the firm will immediately switch the project to automated.
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This corollary helps to generate procyclical aggregate investment in the model.

COROLLARY 4 (Cross-section of investment for growth): If A** < A* conditional on un-
dertaking new projects, firms with high idiosyncratic shocks, z;, are more likely to undertake
new unautomated projects, and firms with low idiosyncratic shocks are more likely to under-

take new automated projects.

Proof: This follows directly from Proposition 2.

The intuition of this corollary is straightforward. Because new unautomated projects can
start generating cash flows more quickly than new automated projects, they are preferable to
be undertaken for expansions when firms are doing well.® This corollary has two implications
in the model. First, it helps generate a stationary distribution of the two types of projects,
since in equilibrium, while existing unautomated projects are switched to automated ones,
new unautomated projects are also undertaken.

Second, this corollary also generates predictions for the cross-section of machinery invest-
ment in good times. Because high- RShare firms, on average, are more likely to have high
firm-specific shocks, they are more likely to hire routine-task labor instead of investing in

machines during good times than low-RShare firms.

COROLLARY 5 (Cross-section of routine-task employment under positive aggregate shock-
s): If A < A*, keeping all else equal, a firm with a high RShare and a high firm-level shock
is more likely to hire routine-task labor than a firm with a low RShare and a low firm-level

shock if the economy experiences a positive shock, that is, dx > 0.

Given that the project-specific shock of any new project is at its long-term mean, the
present value of growth opportunities is a function of the aggregate shock and the firm-

specific shock:

A
 max [V (t +s) — I, Va(t + s:t +5) — Iy — 1,0] ds

PVGOW) =E, [ A
t/szo A (TA.26)

= G(l’u Zt)-

9This argument is consistent with Berger (2012), who argues that firms grow “fat” during booms and
streamline their production during recessions.
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B.4.  Firm Value

At any time ¢, a firm may have ny, unautomated projects and n,4, automated projects
that the firm previously undertook. Let Vi ;(t) denote the value of the [th unautomated
project that the firm undertook, where [ = 1,2,...,ny;. Let ¢, < t denote the time when
the kth automated project was undertaken, and V4 x(tx; ) the value of the kth automated
project, where k = 1,2, ...,n4,. Firm value equals the value of all existing projects plus the

present value of growth opportunities:

nu,t NAt

V() =Y Via(t)+ > Var(ti;t) + PVGO(Y). (IA.27)

C. Firm Risk

The equity beta of a project or a firm is defined as the scaled covariance of its value and

the stochastic discount factor,

(IA.28)

From equation (IA.27), we know that a firm’s beta is the weighted average of the betas of

its existing projects and the beta of its growth opportunities,

<~ Vi &V PVGO
Br=2_ ‘Z’l Bup + kZ ;’kﬁA,k +— Prveo- (IA.29)
=1

=1

Given that multiple channels drive the cross-sectional comparison in betas between firms
with a high and a low RShare, 1 calibrate the model in the next section to examine whether
the switching options channel is a dominating channel under economically reasonable pa-

rameters.

D. Calibration

I simulate the model to examine whether the switching option channel is powerful enough
to generate lower risk premia for high- RShare firms in the cross-section under economically
reasonable parameters. In addition, this test helps shed light on whether the predictabil-
ity of RShare on stock returns is robust to the dynamic setting in which RShare evolves

endogenously.
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To conduct the calibration, I take the following steps. First, I discretize the continuous
model. Second, I obtain the values of parameters by matching several economic moments.
Third, I plug the parameter values into the model and simulate the model to generate stock
returns for five portfolios sorted on the share of routine-task labor.

Zt

The processes for the stochastic discount factor A; and the shocks e®*, e**, and e are

discretized using the following approximations:

152 _

At+At — Ate( r—503)At—oAV At

B 1—e—20At
ext+At — (ext)e At Ox 620 fmt

(IA.30)

N 1—e—20At
62t+At — (ezt)e 602 20 fzt

_oA 1—e—20At
65t+At — (eet)e t 6o'e 529 et7

where At = 1/12 is one month and &, &4, and & are standard normal random variables
that are independent with each other and over time.

I specify a grid of 10 points for each of the processes, and linearly interpolate the value
functions based on the grids. The grid points are chosen by first specifying upper and lower
bounds of the state variable and equally spanning the interval.

Profits in each period are thus

ma(t) = (A — ey — )AL
7TU(t) = (At — CRr — CN — f)At

(IA.31)

The value of V4 and V{79 can be easily calculated based on the analytical functional
forms. I calculate A* by searching a large space of A;.

The relation between a project’s value, dividend, profit, and investment is

Apia

V, =d, + BE( Vieas), (IA.32)

t

where d;, = m, — I, and A; is the state variable.
The value of growth options is calculated following Berk, Green, and Naik (1999), who

simulate 400 time periods to obtain a good approximation of the integration. I discretize
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the present value of growth opportunities as

Mt L&

j=1n=1
where PV GO;,, is the jth realization of the growth opportunity at time ¢ + sA¢. Note
that n = 0 is not included here (those opportunities that come up at t are already taken or
passed). The growth opportunity counts starting from ¢ + At on.

Panel A of Table IAXIII summarizes the parameter choices. My model setup shares many
features with Kogan and Papanikolaou (2014), who also develop a model at the project level.
Hence, I adopt assumption of the parameter values used by Kogan and Papanikolaou (2014)
as possible. Specifically, I adopt the parameter values in Kogan and Papanikolaou (2014) for
the volatilities of x;, z;, and ¢, the rate of mean-reversion, the risk-free rate, and the project
obsolescence rate.! The required time for technology adoption is absent in the model of
Kogan and Papanikolaou (2014). T thus set the required time to be three quarters following
the time-to-build literature (e.g., Kydland and Prescott (1982) find that a reasonable range
for the average construction period is three to five quarters).

Given that Kogan and Papanikolaou (2014) have two factors in their pricing kernel while
my model only has one, I choose the price of risk to match the equal-weighted aggregate
risk premium. Because I assume a constant price of risk in my stochastic discount factor
for tractability, I need an unrealistically high value for the price of risk to match the risk

premium.!!

In addition, my model has a much simpler setting for growth opportunities
compared to the model of Kogan and Papanikolaou (2014), and thus I set the project arrival
rate to match the aggregate dividend growth rate.

The literature offers less guidance on the cost of different production factors at the project
level. I thus match several moments to pin down these parameters. The per-project cost
for using routine-task labor, cg, and nonroutine-task labor, cy, are chosen to match the

aggregate share of routine-task labor in my sample. The rest of the operating cost, f, is

chosen to match the correlation between gross hiring and GDP growth. The cost of project

10Kogan and Papanikolaou (2014) use 0, 0.35, and 0.5 as the rates of mean-reversion for the aggregate
shocks, firm-level shocks, and project-level shocks, respectively. My model requires the rate of mean-reversion
to be the same for all levels of shocks. Thus, I choose the rate of mean-reversion to be 0.35 in my simulation.

1Tt is well known in the literature that a countercyclical price of risk in the stochastic discount factor is
crucial for generating high risk premium. See alternative specifications of the stochastic discount factor in
Zhang (2005) and Jones and Tuzel (2013).
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initiation, I, and the cost of machines per automated project, I,;, are chosen to match the
correlation between gross investment and GDP growth. See Panel B of Table TAXIII for the
moiments.

Plugging these parameter values into equations (IA.17), (IA.24), and (IA.25), we obtain
the optimal thresholds for exercising switching options and growth options. Under these
parameter values, A* = 0.75 and A** = 0.81, while the 40th, 50th, and 60th percentiles of
Ay are 0.63, 1.00, and 1.58, respectively.

Table TAXIII
Parameter Values and Calibration Moments
This table presents the parameter values used in the calibration of the model.

Panel A: Parameter Values

Parameters Symbol Value

Technology
Volatility of aggregate shock Oz 0.13
Volatility of firm-specific shock o 0.15
Volatility of project-specific shock O 1.25
Rate of mean reversion 0 0.30

Project
Operating cost except for labor compensation f 1.25
Compensation for nonroutine-task labor cN 0.25
Compensation for routine-task labor CR 0.35
Investment for project initiation I 3.50
Investment in machines per automated project Iy 0.10
Required time for technology adoption T 0.75
Project obsolescence rate § 0.10
Project arrival rate A 12

Stochastic discount factor

Risk-free rate r 0.03
Price of risk of aggregate shock oA 1.30
Panel B: Calibration Moments
Moments Data Model
Aggregate economic moments
Mean of aggregate dividend growth 0.02 0.02
Volatility of aggregate dividend growth 0.12 0.18
Aggregate share of routine-task labor 0.14 0.14
Aggregate labor share in GDP 0.55 0.24
Correlation between gross investment and GDP Growth 0.48 0.49
Correlation between gross hiring and GDP Growth 0.74 0.59
Asset pricing moments
Mean of equal-weighted aggregate risk premium 0.14 0.15
Volatility of equal-weighted aggregate risk premium 0.26 0.14

Using the above parameter choices, I simulate the model at a monthly frequency (dt =
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1/12) for 1,000 firms over 1,200 periods. I drop the first 600 periods to eliminate dependence
on initial values. I simulate 100 times and calculate the standard errors across simulations.

Table TAXIV reports portfolio sort of stock returns by firms’ share of routine task la-
bor (RShare) using model-simulated data. The excess returns monotonically decrease from
14.20% to 11.96% per year from the lowest RShare quintile to the highest RShare quintile.
Comparing the highest and lowest RShare quintile portfolios yields a —2.24% return spread
per year, which is somewhat smaller than what I find in the data, —3.10%. One reason could
be that the simulation under the parameter values cannot generate enough cross-sectional
dispersion in terms of RShare. The RShare of the five portfolios ranges from 0.06 to 0.22 in
the model, but from 0.02 to 0.39 in the data. The market beta shows a similar monotoni-
cally decreasing pattern and has a spread of —0.18 for the long-short portfolio. In summary,
these results suggest that switching options serve as an economically significant channel that
dominates countering forces such as the operating leverage channel and leads to lower risk

premium for high- RShare firms in the model.

Table TAXIV
Five Portfolios Sorted on RShare using Model-Simulated Data
This table reports asset pricing tests for five portfolios sorted on share of routine-task labor (RShare)
using model simulated data. The model is simulated at a monthly frequency for 1,000 firms over
1,200 periods for 100 rounds. The first 600 periods are dropped to eliminate dependence on initial
values. Excess returns and CAPM alphas are annualized by multiplying by 12 and are reported in

percentages. *, **, and *** indicate significance level of 10%, 5%, and 1%, respectively.
L 2 3 4 H H-L
1. Excess Returns
E[R] - r; (%) 17.02%+ 16.07%** 14.91%* 14.74%+ 14.56*** —2.46%*
(1.71) (1.65) (1.55) (1.49) (1.46) (0.12)
2. Unconditional CAPM
MKT g 1.13*** 1.11%% 1.02%** 0.96*** 0.95*** —0.17***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
a (%) —0.14 ~0.11 ~0.13 ~0.19 ~0.09 0.04
(0.10) (0.11) (0.11) (0.10) (0.10) (0.15)
R? 0.99 0.99 0.99 0.99 0.99 0.53
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